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Abstract
Working in the framework of Sym’s soliton surfaces approach we point out that
some simple assumptions about the structure of linear (spectral) problems of the
theory of solitons lead uniquely to the geometry of some special immersions. In
this paper we consider general su(2) spectral problems. Under some very weak
assumptions they turn out to be associated with hyperbolic surfaces (surfaces of
negative Gaussian curvature) immersed in three-dimensional Euclidean space,
and especially with the so-called Bianchi surfaces.

PACS numbers: 02.30.Ik, 02.40.Hw

1. Introduction

It is very well known that some problems in the geometry of immersions are in a close
relationship with the theory of completely integrable systems. Indeed, the famous Bäcklund
transformation which is a fundamental property of integrable systems first appeared in a
geometrical context. Bäcklund constructed a transformation between pseudospherical surfaces
in three-dimensional Euclidean space E3. In the past few years a lot of papers on numerous
connections of integrability and the differential geometry appeared (see, for instance, [1–7]).
It is intriguing that many problems of classical differential geometry (which often can be
traced back to the 19th century [8, 9]) can be interpreted in the language of the modern theory
of solitons.

We use the soliton surfaces approach, i.e. given a matrix wavefunction � (the fundamental
solution of a spectral problem) we define an immersion using the so-called Sym (or Sym–Tafel)
formula [10, 11]:

F := �−1�,λ (1)

where λ is the spectral parameter. F defined in this way is, obviously, a matrix. However,
treating the matrix as an element of some linear space (a subspace of gl(n, C)) we can identify
F with an immersion into this linear space (more precisely, we have a λ-family of such
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immersions). If the linear space has the structure of some Lie algebra, then we can use a
natural scalar product—the Killing–Cartan form.

In a series of papers it has been shown that the soliton surfaces approach leads to a
surprisingly rich family of immersions which are interesting both for geometrical and physical
reasons [1, 3, 11–13]. The Sym formula enables one to apply numerous techniques of the
theory of solitons where the wavefunction appears explicitly (inverse scattering transform,
loop group approach, Riemann theta function solutions, Darboux–Bäcklund transformation,
etc) in the geometric context.

In this paper we confine ourselves to the Lie group SU(2), namely � = �(x, y; λ) ∈
SU(2) and F = F(x, y; λ) ∈ su(2). We recall that the Lie algebra su(2) can be identified
with the Euclidean space E3 (compare remark 2).

We are going to show that the geometric properties of the immersion F can be related
in a natural way to quite general algebraic structure of the associated spectral problem (the
most important part of this structure is the corresponding loop group). Special attention is
given to the fact that some very simple assumptions on the structure of the associated linear
problem lead uniquely to the specific class of immersions. The important motivation behind
our research consists in preparing a ground for future discretization of the considered spectral
problems.

From geometrical point of view, we can say that the known results usually concern some
specific system of coordinates, some specific gauge, etc. In our paper we present a novel
observation that the structure of a spectral problem (appropriately defined) can uniquely yield
some classes of immersions in arbitrary coordinates.

It would be interesting to connect our results with the approach which is from the
beginning coordinate independent, namely the so-called CC-ideals method. In this approach
the considered system of nonlinear partial differential equations is written as a set of differential
forms (constant coefficients ideal) [14–17]. Then a convenient parametrization of the manifold
defined by the considered CC-ideal is chosen. It seems that discretization procedures have not
yet been studied within this approach.

The case considered in the present paper (the su(2) loop algebra and, especially, the
twisted su(2) loop algebra) is associated with hyperbolic surfaces in E3 (i.e. surfaces of
negative Gaussian curvature at each point). Our main result consists in showing that very
weak assumptions (twisted su(2) non-isospectral linear problem with two poles, at λ = 0
and λ = ∞) uniquely lead to the so-called Bianchi surfaces, i.e. surfaces with the Gaussian
curvature of the form K = −1/ρ2 where ρ,xy = 0 (x, y are asymptotic coordinates). We do
not need any assumptions about the dependence of λ on x, y. The most general dependence
which is consistent with the compatibility conditions leads exactly to the class of Bianchi
surfaces. The isospectral case corresponds to pseudospherical surfaces (i.e. K = const < 0)
in arbitrary coordinates.

Bianchi surfaces and the associated nonlinear system have been recently intensively
studied in the framework of the soliton theory [18–22]. At the end of this paper some physical
applications are discussed. Special attention is given to the relations between the so-called
pumped Maxwell–Bloch system and Bianchi surfaces.

2. Pseudospherical surfaces, asymptotic coordinates

Consider the linear problem

�,x = U� U := Ae1 + λ(Be2 + Ce3)

�,y = V � V := P e1 +
1

λ
(Qe2 + Re3)

(2)
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where A,B,C,P,Q,R are some scalar functions of x, y and e1, e2, e3 is an orthonormal
basis in su(2) (one can take, for instance, ek := − i

2σk , where σ1, σ2, σ3 are Pauli matrices).
In particular, [e1, e2] = e3 etc. The function � is the fundamental solution (matrix-valued)
and we can confine ourselves to �(x, y; λ) ∈ SU(2). The only restriction on the scalar
coefficients is the existence of a non-zero solution � , i.e. the compatibility conditions.

A remark concerning the terminology is in order. We will refer to linear systems such as
(2) as ‘spectral problems’. In the theory of solitons it is more popular to use this name for
only one of the linear equations. All of them are known rather as the ‘linear problem’ or (in
the case of two equations) the ‘Lax pair’. However, for many linear problems (including (2))
all equations are evidently on equal footing and there are no necessary reasons to distinguish
one of them as the spectral problem.

The following analytic and algebraic properties are the most important ingredients of the
structure of the spectral problem (2). First, U and V are rational functions of λ,U has a simple
pole at λ = ∞, while V has a simple pole at λ = 0. Second, U and V can be considered as
maps from R2 (or a region of R2) into the twisted loop algebra su(2) which is defined by the
following constraints:

U(−λ)e1 = e1U(λ) V (−λ)e1 = e1V (λ). (3)

One can easily see that these properties imply uniquely the form (2) of the spectral problem.

Proposition 1. Let F = �−1�,λ where � is an SU(2)-solution to (2). Then F =
f1e1 + f2e2 + f3e3 where fk are real functions of x, y, λ and (f1, f2, f3) is a pseudospherical
immersion in E3 with Gaussian curvature K = −1/λ2. What is more, x, y are asymptotic
coordinates on the pseudospherical surface.

Proof. We compute tangent vectors

F,x = �−1U,λ� = �−1(Be2 + Ce3)�

F,y = �−1V,λ� = −λ−2�−1(Qe2 + Re3)�.

The normalized skew product of tangent vectors yields the normal vector N = �−1e1� . Then

N,x = �−1[e1, U ]� = �−1(λBe3 − λCe2)�

N,y = �−1[e1, V ]� = �−1(λ−1Qe3 − λ−1Re2)�.

Thus we are in a position to calculate explicitly fundamental forms, i.e. I = 〈dF |dF 〉 and
II = −〈dF |dN〉. Namely

I = (B2 + C2) dx2 − 2

λ2
(BQ + CR) dx dy +

1

λ4
(R2 + Q2) dy2

II = 2

λ
(BR − CQ) dx dy

and the Gaussian curvature of F (given by K = det(I)/det(II)) is easily found to be
K = −λ−2 which ends the proof. �

Solving part of the compatibility conditions we will parametrize the Lax pair (2) in a more
convenient way. The compatibility conditions for (2) read

A,y − P,x + BR − CQ = 0

(λB),y + λCP − λ−1AR − (λ−1Q),x = 0

(λC),y − λBP + λ−1AQ − (λ−1R),x = 0.

(4)

Because λ = const we can rewrite the last two equations as follows:

Q,x = −AR R,x = AQ B,y = −CP C,y = BP. (5)
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It is not difficult to derive from (5) that

(Q2 + R2),x = 0 (B2 + C2),y = 0.

Hence the system (5) can be solved to give

A = β,x B = f (x) cos α C = f (x) sin α

P = α,y Q = g(y) cos β R = g(y) sin β

where f, g are functions of one variable and α, β are functions satisfying the first equation of
the system (4), i.e.

(α − β),xy + fg sin(α − β) = 0. (6)

Denoting ϕ := α − β and reparametrizing asymptotic lines du := f (x) dx, dv := −g(y) dy,
we obtain

I = du2 +
2

λ2
cos ϕ du dv +

1

λ4
dv2 II = 2

λ
sin ϕ du dv. (7)

The function ϕ = ϕ(u, v) satisfies the sine-Gordon equation

ϕ,uv = sin ϕ. (8)

Note that from the physical point of view asymptotic coordinates are (in this case) light cone
coordinates.

Remark 1. If the spectral problem (2) is of a more restricted form, namely

A = ϕ,x B = 0 C = 1 P = 0 Q = sin ϕ R = −cos ϕ

then we can recognize in (2) the standard Lax pair for the sine-Gordon equation (8). The
observation that the formula (1) yields in this case pseudospherical surfaces is due to
Sym [23].

Remark 2. In what follows the su(2)-valued F = F(x, y; λ) given by F = �−1�,λ
will always be treated as a λ-family of surfaces in E3 according to the decomposition
F = f1e1 + f2e2 + f3e3, i.e.

su(2) � F ←→ (f1, f2, f3) ∈ E3.

The basis e1, e2, e3 corresponds to a right-oriented orthonormal basis in E3. The commutator
of su(2)-matrices is identified with the vector (skew) product in E3.

Remark 3. Here and in the following we use the notation F(λ) = �−1�,λ instead of the
more precise but less convenient notation F(λ0) = �−1�,λ|λ=λ0 .

3. Pseudospherical surfaces, arbitrary coordinates

Consider the most general linear problem �,k = Uk� (k = 1, 2) subject only to the following
conditions:

• Uk are rational in λ with simple poles at λ = 0 and λ = ∞,
• Uk are real linear combinations of e1, e2, e3 (generators of su(2)),
• Uk(−λ) = e1Uk(λ)e−1

1 .
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In other words, U1 and U2 are functions with values in the twisted su(2) loop algebra with at
most two simple poles, at λ = 0 and λ = ∞. Such a linear problem has the following explicit
representation:

�,k =
(

ake1 +

(
bkλ +

b′
k

λ

)
e2 +

(
ckλ +

c′
k

λ

)
e3

)
� (9)

where ak, bk, b
′
k, ck, c

′
k are real functions of x1, x2. Defining F by the formula (1) we compute

F,k = �−1

((
bk − b′

k

λ2

)
e2 +

(
ck − c′

k

λ2

)
e3

)
�. (10)

Therefore, the normal vector is given by N = �−1e1� and

N,k = �−1[e1, Uk]� = �−1

(
−

(
ckλ +

c′
k

λ

)
e2 +

(
bkλ +

b′
k

λ

)
e3

)
�. (11)

The fundamental forms, I = 〈dF |dF 〉 and II = −〈dF |dN〉, can be computed in the
straightforward way:

I = (
B2

1 + C2
1

)
dx2 + 2(B1B2 + C1C2) dx dy +

(
B2

2 + C2
2

)
dy2 (12)

where x := x1, y := x2, Bk := bk − b′
kλ

−2, Ck := ck − c′
kλ

−2, and

II = 2

λ
((b1 dx + b2 dy)(c′

1 dx + c′
2 dy) − (b′

1 dx + b′
2 dy)(c1 dx + c2 dy)). (13)

In particular,

det(I) = (B1C2 − B2C1)
2

det(II) = 1

λ2 (4(b1c
′
1 − b′

1c1)(b2c
′
2 − b′

2c2) − (b2c
′
1 + b1c

′
2 − b′

2c1 − b′
1c2)

2).
(14)

To obtain further simplification we have to use compatibility conditions for the system (9):

λ2e1(b2c1 − b1c2) = 0

λ−2e1(b
′
2c

′
1 − b′

1c
′
2) = 0

e1(a1,y − a2,x + c1b
′
2 + c′

1b2 − b1c
′
2 − b′

1c2) = 0

λe2(b1,y − b2,x + a1c2 − c1a2) = 0

λ−1e2(b
′
1,y − b′

2,x + a1c
′
2 − c′

1a2) = 0

λe3(c1,y − c2,x + b1a2 − b2a1) = 0

λ−1e3(c
′
1,y − c′

2,x + b′
1a2 − b′

2a1) = 0.

(15)

In fact, only the first two equations (for coefficients by highest and lowest powers of λ) are
useful. They imply

b1 = ν1b c1 = ν1c b′
1 = ν ′

1b
′ c′

1 = ν ′
1c

′

b2 = ν2b c2 = ν2c b′
2 = ν ′

2b
′ c′

2 = ν ′
2c

′ (16)

where ν1, ν2, ν
′
1, ν

′
2, b, c, b′, c′ are some functions. Now the straightforward computation

yields

det(I) = 1

λ4 (ν1ν
′
2 − ν2ν

′
1)

2(bc′ − cb′)2

det(II) = − 1

λ2 (ν1ν
′
2 − ν2ν

′
1)

2(bc′ − cb′)2
(17)
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which means that the Gaussian curvature K = det(I)/det(II) = −λ−2 is constant and
negative. Therefore we have proved the following proposition.

Proposition 2. Let �,k = Uk� (k = 1, 2) where U1, U2 assume values in the twisted su(2)

loop algebra and have at most two simple poles, at λ = 0 and λ = ∞. Then, F = �−1�,λ
has the constant Gaussian curvature K = −1/λ2.

In the smooth case this result can be treated just as a curiosity. Our main motivation to
study possibly general spectral problems is to obtain more general procedures of discretization
for surfaces.

As a rule, the discrete geometry is closely related to a choice of very special coordinates
(e.g., pseudospherical surfaces were discretized in asymptotic coordinates, compare [24] and
references cited therein).

The results of the present paper give some hopes to extend the notions of discrete geometry
on arbitrary coordinates. Namely, if we are able to find a discretization of the given linear
problem preserving all its analytical and loop group properties, then we can expect that also the
basic geometrical properties (concerning the immersions produced by the Sym–Tafel formula)
are preserved. Such a procedure turned out to be successful in the case of pseudospherical
surfaces in asymptotic coordinates [24] and isothermic surfaces in curvature coordinates
[25]. In both cases the correctness of this discretization has been confirmed by other (e.g.,
geometrical) arguments.

The discretization of the linear problem (9) preserving its analytical structure and
loop group properties (i.e. preserving the conditions listed at the beginning of section 3)
reads

Tk� = Uk� Uk := iakσ1 + i

(
bkλ +

b′
k

λ

)
σ2 + i

(
ckλ +

c′
k

λ

)
σ3 + dk (18)

where k = 1, 2 and �, ak, bk, b
′
k, ck, c

′
k, dk are functions of discrete variables m,n and of

(continuous) parameter λ. The standard shift operator is denoted by Tk , i.e. T1�(m, n, λ) :=
�(m + 1, n, λ), T2�(m, n, λ) := �(m, n + 1, λ). To obtain su(2)-valued F using the Sym
formula we have to use unimodular matrices:

	 := �√
det �

Ûk := Uk√
a2

k + (bkλ + b′
k/λ)2 + (ckλ + c′

k/λ)2 + d2
k

. (19)

In this way we cancel the trace of F without changing its other components, compare [24].

Conjecture 1. The Sym–Tafel formula F = 	−1	,λ applied to the discrete linear problem
Tk	 = Û k	 yields discrete pseudospherical surfaces in arbitrary coordinates.

An analogical conjecture has been earlier formulated in the case of local isometric
immersions of Lobachevsky n-spaces in E2n−1 [26]. The subcase n = 2 corresponds to
pseudospherical surfaces in curvature coordinates. However, a complete geometric description
of such discretization is still missing.

Recently, Schief presented new results concerning the discretization of a large class
of surfaces, including pseudospherical surfaces in curvature coordinates [27]. It would be
interesting to check whether our approach, based on the Sym formula, yields the same results
in this case.
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4. Invariants of the Darboux–Bäcklund transformation

The Darboux–Bäcklund transformation �̃ = D� preserves, by definition, the structure of the
spectral problem (e.g., its dependence on λ and group reductions). We confine ourselves to
Darboux matrices of the form

D = N
(

I +
λ1 − µ1

λ − λ1
P

)
(20)

where I is the unit matrix, N is the normalization matrix, P is a projector (P 2 = P) and
λ1, µ1 are complex parameters. The projector P is expressed in terms of the background
wavefunction in a well known way: ker P = �(λ1)Vker, im P = �(µ1)Vim, where Vker and
Vim are constant vector spaces, see [21]. The su(2) reduction implies

P † = P N† = N−1 µ1 = λ̄1. (21)

The involution (3) implies

P e1 = e1(I − P) N e1 = ±e1N µ1 = −λ1. (22)

We introduce the following notation:

iκ1 := λ1 = −µ1 Q := I − 2P. (23)

Note that κ1 is real and Q2 = I . The reduction to the twisted su(2) loop algebra implies
that Q = σ2 cos θ + σ3 sin θ , where θ is a real function which, obviously, can be expressed by
�(iκ1).

Taking into account (16) we rewrite the linear problem for pseudospherical surfaces in
arbitrary coordinates (9) as follows:

�,k = (ake1 + λνk(be2 + ce3) +
ν ′

k

λ
(b′e2 + c′e3))�. (24)

To make the definition of νk, ν
′
k unique we can assume (without loss of generality)

b2 + c2 = 1 (b′)2 + (c′)2 = 1 νk � 0 ν ′
k � 0. (25)

The form (24) of the linear problem is preserved by the Darboux–Bäcklund transformation
(see, for instance, [21]). The explicit formulae for this transformation read

ν̃k(b̃e2 + c̃e3) = νkN (be2 + ce3)N−1

ν̃ ′
k(b̃

′e2 + c̃′e3) = ν ′
kNQ(b′e2 + c′e3)Q

−1N−1

ãke1 = N (ake1 − iκ1νk[Q,be2 + ce3])N−1 + N ,k N−1.

(26)

In the above formulae similarity transformations can be easily recognized as rotations around
the e1-axis. Therefore the lengths of the transformed vectors are invariant, i.e.

ν̃k = νk ν̃ ′
k = ν ′

k (k = 1, 2). (27)

In other words, we can consider νk, ν
′
k as prescribed functions (more details concerning

invariants of the Darboux transformation can be found in [21]).
In order to obtain a geometric interpretation of these invariants, we will take into account

the compatibility conditions (15) to parametrize more explicitly the linear problem (24).
Because of (25) we can introduce β, β ′ such that

b = sin β c = cos β b′ = −sin β ′ c′ = −cos β ′. (28)
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Now the compatibility conditions (15) read

ν1,y = ν2,x ν ′
1,y = ν ′

2,x

ν1(a2 − β,y) = ν2(a1 − β,x)

ν ′
1(a2 − β ′,y) = ν ′

2(a1 − β ′,x)

a1,y − a2,x = (ν1ν
′
2 − ν ′

1ν2) sin(β ′ − β).

(29)

The first two equations imply that there exist functions ξ = ξ(x, y) and η = η(x, y) such that

dξ = ν1 dx + ν2 dy dη = ν ′
1 dx + ν ′

2 dy. (30)

Then the fundamental forms (12) and (13) can be written as

I = dξ2 +
2

λ2
cos φ dξ dη +

1

λ4
dη2 II = 2

λ
sin φ dξ dη (31)

where φ := β ′ − β. It means that ξ, η are asymptotic coordinates (compare (7)). Therefore
the Darboux–Bäcklund transformation preserves any coordinates which are defined as given
functions of asymptotic coordinates.

In particular, we obtain an obvious corollary that the reduction to asymptotic coordinates
is also integrable. The condition for x, y to be asymptotic is very simple: either ν1 = ν ′

2 = 0
or ν2 = ν ′

1 = 0. Actually this case is even more evident because its defining condition
consists in a different (more precise) specification of the poles of matrices of the spectral
problem. Indeed, in the general situation both matrices have two poles while in the asymptotic
coordinates case the first matrix has a pole at λ = ∞ and the second one has a pole at λ = 0.

The curvature coordinates diagonalize both fundamental forms. The fundamental forms
(12), (13) for pseudospherical surfaces are diagonal if

(b1λ
2 − b′

1)(b2λ
2 − b′

2) + (c1λ
2 − c′

1)(c2λ
2 − c′

2) = 0

b1c
′
2 + b2c

′
1 = b′

1c2 + b′
2c1.

(32)

Let us take into account (16), (28) and assume that F = �−1�,λ is not degenerate (i.e.
det(I) 
= 0, see (17)). Then equations (32) yield

λ4ν1ν2 + ν ′
1ν

′
2 = 0 ν ′

2ν1 + ν ′
1ν2 = 0. (33)

These constraints depend on the invariants νk, ν
′
k and on the spectral parameter λ which is

not changed by the Darboux–Bäcklund transformation as well. In the non-degenerate case
(det(I) 
= 0) equations (33) yield

ν ′
1 = ±λ2ν1 ν ′

2 = ∓λ2ν2. (34)

Corollary 1. The Darboux–Bäcklund transformation preserves both asymptotic and curvature
coordinates on pseudospherical surfaces.

Remark 4. Note that the functions νk, ν
′
k defining curvature coordinates depend on λ which

labels a surface from Sym’s λ-family. It does not contradict our earlier statement that νk, ν
′
k

do not depend on λ. In fact they depend on λ0 (compare remark 3).

5. Bianchi surfaces, asymptotic coordinates

The strength of the compatibility condition is even more impressive in the ‘non-isospectral’
case. Namely, consider the linear problem (2), the same as in section 2 but now λ is not
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constant. We assume that λ depends not only on x and y but also on some parameter ζ . In
fact ζ is the proper (constant!) spectral parameter. In the formula (1) we will replace λ by ζ .

Proposition 3. Let the assumptions of proposition 1 be satisfied but λ is allowed to be a
function λ = λ(x, y, ζ ). Then F := �−1�,ζ has to be a Bianchi surface in E3 (i.e. the
Gaussian curvature of F is given by K = −1/ρ2 where ρ,xy = 0) and x, y are asymptotic
coordinates.

Proof. By full analogy to the proof of proposition 1 we have

F,x = λ,ζ �
−1(Be2 + Ce3)� F,y = −λ−2λ,ζ �

−1(Qe2 + Re3)�

then N = �−1e1� and

N,x = �−1(λBe3 − λCe2)� N,y = �−1(λ−1Qe3 − λ−1Re2)�.

The fundamental forms can be easily computed

I = (λ,ζ )
2

(
(B2 + C2) dx2 − 2

λ2
(BQ + CR) dx dy +

1

λ4
(R2 + Q2) dy2

)

II = 2λ,ζ

λ
(BR − CQ) dx dy.

The second fundamental form is off-diagonal which means that coordinates x, y are
asymptotic. The Gaussian curvature of F is easily found to be

K = det(I)

det(II)
= − λ2

(λ,ζ )2
. (35)

Note that to obtain this result no information about the function λ = λ(x, y, ζ ) was needed.
However, the compatibility conditions impose severe restrictions on the form of the function
λ. Taking into account that now λ 
= const we rewrite the compatibility conditions (4) as

A,y − P,x + BR − CQ = 0

λ,y B + λ(B,y + CP) =
(

1

λ

)
,x Q +

1

λ
(Q,x + AR)

λ,y C + λ(C,y − BP) =
(

1

λ

)
,x R +

1

λ
(R,x − AQ)

(36)

which can be rewritten in the matrix form(
B −Q

C −R

) (
λ,y

(λ−1),x

)
=

(−B,y − CP Q,x + AR

−C,y + BP R,x − AQ

)(
λ

λ−1

)
. (37)

Therefore, if QC − BR 
= 0, we can express λ,y and (λ−1),x as linear combinations of λ

and λ−1

λ,y = aλ + b
1

λ
(λ−1),x = cλ + dλ−1 (38)

where a, b, c, d do not depend on ζ . We will treat them as given functions subject to restrictions
following from the compatibility conditions for (38)

λ3(c,y + 2ac) + λ(a,x + d,y + 4bc) + λ−1(b,x + 2bd) = 0

which split into three equations

b,x + 2bd = 0 c,y + 2ac = 0 a,x + d,y + 4bc = 0. (39)

Let us try to solve the compatibility conditions (39).
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If bc 
= 0, then

d = − 1
2 (log|b|),x a = − 1

2 (log|c|),y (40)

(log|bc|),xy = 8bc. (41)

The last equation is equivalent to the celebrated Liouville equation ψ,xy = eψ . Its general
solution reads

bc = h,x g,y

4(h + g)2
(42)

where h = h(x) and g = g(y) are arbitrary functions of one variable (the condition bc 
= 0
implies h,x 
= 0 and g,y 
= 0). Therefore,

b = g,y

2(g + h)σ
c = h,x σ

2(g + h)
(43)

where σ is an arbitrary function of x, y. Thus the general solution of the system (39) under
assumption bc 
= 0 is given by (40) and (43).

Taking into account this result we are going to compute λ from equations (38). Substituting
(40) into (38) we obtain

λ,y +
c,y

2c
λ = b

λ

(
1

λ

)
,x +

b,x

2b

1

λ
= cλ

and multiplying the first equation by 2cλ and the second one by 2bλ−1 we obtain

(cλ2),y = 2bc (bλ−2),x = 2bc. (44)

Rewriting (42) in the form

bc = − 1
4 (log(h + g)),xy (45)

we can integrate once equations (44). Then, substituting (43) we get

h,x (1 + σλ2) = (h + g)H g,y (1 + (λ2σ)−1) = (h + g)G (46)

where H = H(x) and G = G(y) are functions of one variable. Eliminating σλ2 we get

g,y

G
− g = h − h,x

H
(47)

which implies that both sides must be constant. It is convenient to denote this constant by
1/2ζ . Then

G = 2ζg,y

2ζg + 1
H = 2ζh,x

2ζh − 1
(48)

where ζ = const. Finally, from (46) we compute

σλ2 = 2ζg + 1

2ζh − 1
. (49)

Remark 5. The linear system (2) is invariant under the transformation λ → f (x, y)λ (for any
given function f ) and also under the transformation λ → 1/λ, x ↔ y. Therefore σ can be
prescribed arbitrarily without loss of generality (the second transformation can be necessary
because the first transformation cannot change the sign of σ ).

Note that

ρ̂ := λ,ζ

λ
= g

1 + 2ζg
+

h

1 − 2ζh
(50)
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which means (compare (35)) that the Gaussian curvature K ≡ −ρ̂−2 does not depend on σ

and, moreover, ρ̂,xy = 0. Equations (38) assume the form

λ,x = − h,x

2(h + g)
(σλ3 + λ) − λσ,x

2σ

λ,y = g,y

2(h + g)

(
λ +

1

σλ

)
− λσ,y

2σ
.

(51)

Now, we take into account remark 5. Fixing σ = −1 and denoting

ρ(x, y) := h(x) + g(y) (52)

we represent these equations in a more familiar way (compare [18, 19]):

λ,x = ρ,x

2ρ
(λ3 − λ) λ,y = ρ,y

2ρ
(λ − λ−1) (53)

with general solution given by

λ2 = 1 + 2ζg

1 − 2ζh
. (54)

In the case g ≡ 0 another choice can be more natural, namely σ = 1/h. Then

λ,x = −h,x λ3

2h2
λ,y = 0. (55)

Similarly, in the case h ≡ 0 we can take σ = g and

λ,y = g,y

2g2λ
λ,x = 0. (56)

Such dependence of the spectral parameter has been assumed, for instance, by Schief [17, 28].
In the case b = 0, c 
= 0 equations (39) and (38) yield

a = −1

2
(log c),y d = −1

2
(log c),x + φ

λ,y = −1

2
(log c),y λ λ,x = −cλ3 −

(c,x

2c
+ φ

)
λ

where φ = φ(x) is a function of one variable. There is no constraint on c, i.e. c = c(x, y) is
an arbitrary function. The equations for λ can be represented in the form

(λ2c),y = 0 (λ2c),x + 2(λ2c)2 + 2φλ2c = 0 (57)

and can be explicitly solved. Indeed, introducing functions χ,ψ

χ := 1

λ2c
2φ = −(log ψ),x

we transform (57) into

χ,y = 0 (ψχ),x = 2ψ. (58)

Integrating, we solve the equation for χ to get

1

cλ2
= ζ

ψ
+

2

ψ

∫ x

x0

ψ(ξ) dξ

where ζ is the constant of the integration. To obtain a formula similar to (49) we denote

σ(x, y) := −2c(x, y)

ψ(x)

∫ x

x0

ψ(ξ) dξ h(x) := −
(

4
∫ x

x0

ψ(ξ) dξ

)−1

.



6434 J L Cieśliński

Because ψ and c are arbitrary functions, σ and h are arbitrary as well. Therefore

σλ2 = 1

2ζh − 1
(59)

which is a special case of (49) (g = 0) as should be expected. Equation (50), with g = 0, is
satisfied as well. The Gaussian curvature, given by

K = −(h−1 − 2ζ )2

is a function of one variable (compare [28]).
In the last case (i.e. b = c = 0) we have

a = φ,y d = −φ,x λ,y = φ,y λ λ,x = φ,x λ

which means that λ = ζ eφ (where ζ = const) and, finally, K = −ζ 2 = const. Thus the proof
is completed. �

Remark 6. It is well known that the form (2) of the spectral problem and the dependence of
λ on x, y given by (53) correspond to Bianchi surfaces equipped with asymptotic coordinates
(compare [19]). A novelty consists in deriving the formula (49) directly from the compatibility
conditions as the unique possibility.

The discretization of Bianchi surfaces in asymptotic coordinates has been proposed
recently [29]. A derivation of this result based on geometrical considerations will be published
soon [30]. The corresponding discrete system was first obtained (and shown to be integrable)
in the context of isothermic surfaces [7]. A discretization of Bianchi surfaces in any other
coordinates is still an open problem.

6. Bianchi surfaces, arbitrary coordinates

Performing an arbitrary change of coordinates for the system (2) we obtain linear equations
which are both linear in λ and λ−1. It is surprising however that any linear problem of this
kind is associated with Bianchi surfaces. Indeed, let us consider an su(2) spectral problem

�,k =
(

Ak + λBk +
1

λ
Ck

)
� (k = 1, 2) (60)

where we assume the reduction Uk(−λ)e1 = e1Uk(λ). In other words,

Ak := ake1 (61)

and Bk, Ck are λ-independent linear combinations of e2 and e3.
The compatibility conditions read

A1,2 + (λB1),2 + (λ−1C1),2 − A2,1 − (λB2),1 − (λ−1C2),1

+ [A1, A2] + λ2[B1, B2] + λ−2[C1, C2] + [B1, C2] + [C1, B2]

+ λ([A1, B2] + [B1, A2]) + λ−1([A1, C2] + [C1, A2]) = 0. (62)

The coefficients by λ2e1 and λ−2e1 imply [B1, B2] = [C1, C2] = 0 which means that

Bk = BkB Ck = CkC (k = 1, 2) (63)

where Bk and Ck are some scalar functions and B and C are of unit length, i.e.

B = e2 cos β + e3 sin β C = e2 cos γ + e3 sin γ. (64)

Thus

〈B|C〉 = cos ϕ [B, C] = e1 sin ϕ (65)
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where ϕ := γ − β. Then the e1-component of (62) yields

a1,2 − a2,1 + (B1C2 − C1B2) sin ϕ = 0. (66)

Consider the part of the compatibility conditions (62) given by coefficients e2 and e3. If B
and C are linearly independent, then it is convenient to use them as a basis. Let us decompose
the following expressions with respect to this basis:

(B1B),2 − (B2B),1 + (a1B2 − a2B1)[e1, B] = p1B + p2C

(C1C),2 − (C2C),1 + (a1C2 − a2C1)[e1, C] = q1C + q2B

where pk = pk(x
1, x2) and qk = qk(x

1, x2) are the corresponding components which can be
easily computed:

p2 sin ϕ = B1β,2 − B2β,1 + a1B2 − a2B1

q2 sin ϕ = C2γ,1 − C1γ,2 + a2C1 − a1C2

p1 = B1,2 − B2,1 − p2 cos ϕ

q1 = C1,2 − C2,1 − q2 cos ϕ.

Then this part of the compatibility conditions reads(
λ,2B1 − λ,1B2 + λp1 +

1

λ
p2

)
B +

(
λ,1

λ2
C2 − λ,2

λ2
C1 + λq2 +

1

λ
q1

)
C = 0.

Solving them with respect to derivatives of λ we get(
λ,1

λ,2

)
= 1

B2C1 − B1C2

(
B1q2λ

3 + (C1p1 + B1q1)λ + C1p2λ
−1

B2q2λ
3 + (C2p1 + B2q1)λ + C2p2λ

−1

)
. (67)

Introducing the notation

ζ = λ2

we immediately see that (67) is a system of two Riccati equations for ζ :

ζ,k = 2αkζ
2 + 2βkζ + 2γk (k = 1, 2) (68)

where

αk = Bkq2

B2C1 − B1C2
βk = (Ckp1 + Bkq1)

B2C1 − B1C2
γk = Ckp2

B2C1 − B1C2
. (69)

The Riccati equations for ζ are more general than the previous system (53). However,
they can be reduced to (53) by a change of variables. It is enough to show that after a change
of variables γ1 and α2 vanish.

Proposition 4. The change of variables (x1, x2) �→ (x̃1, x̃2) defined by

C1
∂x1

∂x̃1
+ C2

∂x2

∂x̃1
= 0 B1

∂x1

∂x̃2
+ B2

∂x2

∂x̃2
= 0 (70)

transforms the spectral problem (60) into (2), i.e. C̃1 = B̃2 = 0. Moreover, γ̃1 = α̃2 = 0.

The proof is straightforward. Let us point out that the condition for vanishing γ̃1 and α̃2

is of the form

γ1
∂x1

∂x̃1
+ γ2

∂x2

∂x̃1
= 0 α1

∂x1

∂x̃2
+ α2

∂x2

∂x̃2
= 0.

These equations follow from (70) because of (69).
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Let us proceed to describe the geometry of the corresponding Sym’s surfaces. Defining,
as in the previous section, F := �−1�,ζ we have

F,k = λ,ζ �
−1(BkB − λ−2CkC)� (71)

and the coefficients of the first fundamental form read

g11 = 〈F,1|F,1〉 = (λ,ζ )
2
(
B2

1 − 2λ−2B1C1 cos ϕ + λ−4C2
1

)
g12 = 〈F,1|F,2〉 = (λ,ζ )

2(B1B2 − λ−2(B1C2 + B2C1) cos ϕ + λ−4C1C2)

g22 = 〈F,2|F,2〉 = (λ,ζ )
2
(
B2

2 − 2λ−2B2C2 cos ϕ + λ−4C2
2

)
.

(72)

The determinant det(I) ≡ g11g22 − g2
12 is given by

det(I) =
(

λ,ζ

λ

)4

(C1B2 − C2B1)
2 sin2 ϕ. (73)

Computing

[F,1, F,2] =
(

λ,ζ

λ

)2

(C1B2 − B1C2)�
−1[B, C]�

we see (compare (65)) that the normal vector is given by

N = �−1e1�. (74)

To obtain the coefficients of the second fundamental form, Bjk = −〈F,j |N,k〉, we compute

N,k = �−1[e1, Ak + λBk + λ−1Ck]� = �−1(λBk[e1, B] + λ−1Ck[e1, C])�. (75)

Then, taking into account 〈B |[e1, B]〉 = 〈C |[e1, C]〉 = 0, we have

〈F,j |N,k〉 = (λ,ζ /λ)(BjCk〈B|[e1, C]〉 − CjBk〈C|[e1, B]〉.
Moreover, 〈C|[e1, B]〉 = −〈B |[e1, C]〉 = sin ϕ. Therefore

II = 2(λ,ζ /λ) sin ϕ(B1C1 dx2 + (B1C2 + B2C1) dx dy + B2C2 dy2) (76)

and det(II) = −(λ,ζ /λ)2 sin2 ϕ(B1C2 − B2C1)
2. Finally,

K = det(I)

det(II)
= −

(
λ,ζ

λ

)2

. (77)

Therefore, the case studied in this section corresponds exactly to Bianchi surfaces endowed
with arbitrary coordinates.

The Darboux–Bäcklund transformation given by (20) for the linear problem (60) (with
the λ-dependence given by (68)) reads (compare [21])

N−1ÃkN = Ak − iκ1[Q, Bk] + N−1N ,k

N−1B̃kN = Bk + iκ1αkQ

N−1C̃kN = QCkQ + iκ−1
1 γkQ

(78)

where N ,Q, κ1 are defined in section 4. In the non-isospectral case the iκ1 is a function
satisfying the same differential equation as λ (see [21]).

The Darboux–Bäcklund transformation in this case does not seem to have as many
invariants as in the isospectral case (compare section 4). We just remark that the constraints

C1 = B2 = 0 γ1 = α2 = 0

are obviously invariant with respect to the transformation (78), i.e. C̃1 = B̃2 = 0. These
constraints reduce the spectral problem (60) to the non-isospectral version of (2) which
corresponds to pseudospherical surfaces in asymptotic coordinates. Asymptotic coordinates
are also obtained for the analogical (‘symmetric’) case: C2 = B1 = 0, γ2 = α1 = 0.
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7. Physical applications

In the framework of the soliton surfaces approach the spectral problems considered in this
paper can be associated with some models of physical interest.

The position vector F = F(x, y; ζ ) to Bianchi surfaces in asymptotic coordinates
(compare proposition 3) satisfies the equation

F,xy = − 1

ρ̂
F,x × F,y +

ρ̂,y

2ρ̂
F,x +

ρ̂,x

2ρ̂
F,y ρ̂,xy = 0 (79)

where ρ̂ = λ,ζ /λ (see also (50)) and the cross means the vector (skew) product in E3. Note
that for ζ = 0 we have ρ̂ = ρ = h(x) + g(y).

The physical interpretation of equation (79) is clear especially in the case ρ̂ = const
[18] when it represents a Lund–Regge vortex model [31] or relativistic string moving in the
constant external field [32]. This is a chiral model, its solutions are harmonic maps from
two-dimensional Minkowski space into a two-dimensional submanifold of E3. The additional
terms appearing for ρ̂ 
= const can be associated with a friction proportional to the velocity
[18].

In terms of the tangent vectors, S := F,x and T := F,y , we can rewrite (79) as

S,y = 1

ρ̂
T × S +

ρ̂,y

2ρ̂
S +

ρ̂,x

2ρ̂
T T ,x = S,y ρ̂,xy = 0 (80)

(note that the above form is simpler than, although equivalent to, that given in [18] and correct,
in contrast to the misprinted formula given in [21]). The specialization ρ̂ = const reduces this
system to a quantum optics model [33].

However, the Bianchi surfaces yield but a subset of solutions to equation (79). Indeed,
the su(2) spectral problem of the general form

�,x = (U0 + λU1)� �,y =
(

V0 +
1

λ
V1

)
� (81)

with λ depending on x and y generates solutions to equation (79) as well. This result has not
been fully discussed in the literature yet (some results for ρ̂ = const can be found in [32]),
so we give here more details. The compatibility conditions, similarly as in section 5, imply
equations (53) and (54) for x, y-dependence of λ (ρ is a given function satisfying ρ,xy = 0)
and the following nonlinear system for U0, V0, U1, V1:

U1,y + [U1, V0] +
ρ,y

2ρ
U1 +

ρ,x

2ρ
V1 = 0

V1,x + [U0, V1] +
ρ,y

2ρ
U1 +

ρ,x

2ρ
V1 = 0

U0,y − V0,x + [U0, V0] + [U1, V1] = 0.

(82)

Then F = �−1�,ζ yields

F,x = λ,ζ �
−1U1� F,y = −λ,ζ λ

−2�−1V1�

F,xy = λ,ζ �
−1

(
U1,y +

ρ,y

2ρ
U1

(
1 +

1

λ2

)
+ [U1, V0] +

1

λ
[U1, V1]

)
�.

Using the compatibility conditions, taking into account that

ρ,xλ
2

2ρ
= ρ̂,x

2ρ̂

ρ,y

2ρλ2
= ρ̂,y

2ρ̂

and identifying the commutator with the skew product (compare remark 2) we get (79).
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Therefore the ‘twisting’ condition (3), very important for geometrical reasons, is not
necessary for producing equation (79).

The following constraints on the system (82)

ρ̂,x = 0 V0 = 0 U1 = f (t)e3 U0 ⊥ U1 y ≡ t (83)

yield ρf 2 = const and reduce equations (82) to the pumped Maxwell–Bloch system [17]:

E,t = P P,x = En n,x + 1
2 (ĒP + EP̄ ) = ff,t (84)

where f = f (t) is a given function. To obtain the system (84) we have to parametrize U0 and
V1 as follows:

U0 = Re(E)e1 + Im(E)e2 f V1 = −Im(P )e1 + Re(P )e2 + ne3

where complexes E and P denote the envelope amplitude of the electric field and polarization,
respectively, n is the atomic inversion and x, t are scaled space and retarded time variables.
The case f = const yields an unpumped Maxwell–Bloch system, equivalent to sharpline
self-induced transparency equations [34, 35]. For f 2 linear in t the pumping is constant [17].

The involution (3) defining Bianchi surfaces imposes the reality conditions on the solutions
of the Maxwell–Bloch system: Im(E) = 0, Im(P ) = 0. Therefore real solutions of the
pumped Maxwell–Bloch system ‘live’ on Bianchi surfaces with curvature depending on just
one variable, K = K(x). The real solutions of the unpumped system are associated with the
pseudospherical surfaces. The same concerns pure imaginary solutions (it is enough to take
another involution, replacing e1 by e2).

The constraints (83) are preserved by the Darboux–Bäcklund transformation. Indeed, the
constraints for U1 and U0 are standard (see, for instance, [21]). The condition V0 = 0 can
be rewritten in this case as V (λ) → 0 for λ → ∞. Such a condition is always preserved
provided that the normalization matrix N is constant.

Another physical connection arises when we consider the kinematics of the normal vector
N = (N1, N2, N3) to the Bianchi surface (in asymptotic coordinates, x1 = x, x2 = y) given
by the Sym formula F = �−1�,ζ

N,12 +
ρ̂,2

2ρ̂
N,1 +

ρ̂,1

2ρ̂
N,2 + CN = 0 N2 = 1 ρ̂,12 = 0 (85)

where the scalar function C can be easily expressed in terms of N using the constraint N2 = 1.
Denoting n := N

√
ρ̂ we can rewrite (85) as the Moutard equation

n,12 = �n n2 = ρ̂ (86)

where ρ̂ is a given function satisfying ρ̂,12 = 0. The corresponding Lagrangian is given
by [21]

L = 1

2

∫
(〈n,1|n,2〉 + �(〈n|n〉 − ρ̂)) dx1 dx2. (87)

Equation (85) is closely related to the Ernst equation describing a stationary, axially symmetric
gravitational field in general relativity [36]:

E,zz̄ +
ρ,z̄

2ρ
E,z +

ρ,z

2ρ
E,z̄ = E,z E,z̄

Re(E)
ρ,zz̄ = 0 (88)

(z and E are complex). Indeed, using a stereographic projection, namely introducing the
complex variable

E = N1 + iN2

1 + N3
(89)
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we can rewrite (85) in the form

E,12 +
ρ̂,2

2ρ̂
E,1 +

ρ̂,1

2ρ̂
E,2 = 2E,1E,2Ē

1 + |E|2 ρ̂,12 = 0 (90)

which is quite similar to (88). To make this analogy even closer, one can represent (85) as the
equation of the following chiral model (or sigma model):

(ρ̂n−1n,1 ),2 + (ρ̂n−1n,2 ),1 = 0 n2 = −1 ρ̂,12 = 0 (91)

where in the case of the Bianchi surfaces n is just the su(2) counterpart of N, i.e.
n = iσ1N1 + iσ2N2 + iσ3N3 (compare remark 2). This is a hyperbolic sigma model with
the symmetry su(2) (or so(3)).

The Ernst equation is equivalent to the same sigma model (91) with just two differences: it
is elliptic (i.e. instead of real independent variables we have complex variables,x1 = z, x2 = z̄)
with the symmetry so(2, 1) (for more details, see [35]).

8. Conclusions

In the theory of solitons the construction of integrable systems starting from some assumptions
on the form of spectral problem is standard. We exploit this approach in the field of classical
geometry of immersed surfaces using Sym’s approach of soliton surfaces. The main point
was to weaken the assumptions as much as possible. The results are very promising. Spectral
problems based on the twisted su(2) loop algebra with at most two poles lead uniquely to
pseudospherical surfaces and (in the non-isospectral case) to Bianchi surfaces.

The approach of this kind is very convenient if the construction of the Darboux–Bäcklund
transformation is concerned (compare [21]). Indeed, such construction is very well known
and standard in the case of spectral problems in a general form. Some problems can be created
by reductions (except group reductions which are also relatively well known). Minimizing
the number of restrictions on the form of the spectral problem certainly helps to construct the
Darboux–Bäcklund transformation.

However, the most challenging problem is to find discrete versions of the presented
spectral problems. Thus we will be able to characterize discrete hyperbolic (in particular,
pseudospherical) surfaces in a coordinate-independent way.
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Estabrook technique J. Math. Phys. 24 2178–87
[16] Hoenselaers C 1985 The sine-Gordon prolongation algebra Progr. Theor. Phys. 74 645–54
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